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ABSTRACT 

This paper presents advanced structural health monitoring (SHM) methods for 
aerospace composite structures, which pose unique challenges due to sensor placement, 
cost, and environmental exposure. We introduce novel, physics-disciplined, data-driven 
approaches developed through two European Union projects. The first technique 
embeds glass-coated copper microwires in carbon-fibre composites, exploiting their 
Giant Magnetoimpedance (GMI) response to detect, classify, and quantify damage 
under stress. The second approach supports damage monitoring in composite liquid 
hydrogen tanks using Fibre Bragg Grating (FBG) sensors, addressing the challenges of 
conformal geometry and strict leakage tolerance where conventional diagnostics are 
inadequate. Physics-informed machine learning algorithms are developed for both 
systems. Finite element simulations inform neural network architecture and feature 
selection, while simulated signals guide strain and damage modelling. Experimental and 
simulation-based validation confirms high accuracy in damage detection and 
characterisation. 

This work was funded by the European Union under the Horizon Europe grant 
101056884 and by the EU Clean Hydrogen Partnership under Grant Agreement 
101101404. Views and opinions expressed are however those of the author(s) only and 
do not necessarily reflect those of the European Union or Clean Hydrogen Joint 
Undertaking. Neither the European Union nor the granting authority can be held 
responsible for them. 

 
 

1. INTRODUCTION 
 

Unscheduled maintenance and operational disruptions pose significant costs to the 
aviation industry. In 2015, the 13 largest U.S. airlines incurred USD 5 billion in total 
costs—USD 2 billion from delays and cancellations, and USD 3 billion from unplanned 
maintenance [1]. Around 70% of disruptions were due to Line Replaceable Unit (LRU) 
failures, with 25% of these attributable to predictable factors such as weather, pollution, 
wear, and malfunction. 
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Average direct maintenance costs are USD 870 per flight hour, with 40% for 
engines, and 30% each for airframe and components. Labour accounts for 22% and 
materials for 60% of these costs [2]. In 2016, the maintenance supply chain held USD 
44 billion in inventory—about USD 2.5 million per active aircraft. Warranty reserves 
totalled USD 2.1 billion for aerospace OEMs and USD 2.3 billion for suppliers [3]. 
Fault diagnosis and part replacement delays often lead to extended aircraft downtime 
and further schedule disruptions. 

 
 
 

2. PREVIOUS WORK 
 

In the search for optimal algorithms for structural health monitoring (SHM) in 
composite structures, a comprehensive review of state-of-the-art Artificial 
Intelligence/Machine Learning (AI/ML) approaches was undertaken. Although 
previous work on SHM specifically for aerospace composite structures is scarce — and 
research on composites or aerospace independently is limited — the literature in the 
broader field of civil engineering (e.g., buildings, bridges, pipelines) offers a substantial 
basis for survey and analysis. 

In the recent literature, state-of-the-art AI/ML approaches have been used for 
SHM of composite structures. Supervised methods including Decision Trees (DT), 
Support Vector Machines (SVM), k-Nearest Neighbours and ensemble modelling ( [4], 
[5]) have been used for the classification of damage on structures including composites. 
The main shortcoming of these methods is the inability to deal with nonlinear 
corelations between operational parameters and damage features, while their 
effectiveness and performance drops as the data dimensionality increases. 

Neural Network (NN) based approaches have shown to overcome this issue [4]. 
Deep Learning (DL) methods based on Convolutional Neural Network (CNN) [6], 
probabilistic NNs [7] and deep autoencoders [8], that have been used for composite 
SHM algorithms, have the advantage of extracting key features from data and images 
by using convolutional operations [4], which can be interpreted as mathematical 
functions operating on data. Any physical restrictions on relationships in the data can 
be represented as convolutional filters. If these filters are being trained, constraints on 
these filters in terms of dimensions, sizes, and weight values can be implemented to 
improve the training and performance while each filter learned in this way can be 
interpreted as a physical function, and it is possible to compare and adjust the weights 
using domain knowledge. This gives rise to the so-called physics-disciplined (or 
physics-inspired) neural networks [6] that we will explore further in this paper. 

 
 

3. BACKGROUND 
 

SHM refers to the continuous or periodic observation of structural systems 
through response measurements, enabling the detection of changes in material or 
geometric properties over time. 
 
3.1 Fibre Bragg Gratings 
 



Fibre Bragg Gratings (FBGs) are well-suited for detecting localised strain changes 
caused by damage, as they respond to both average and differential strain along their 
length. Under uniform strain and temperature, the Bragg wavelength shifts predictably, 
producing a single, symmetric reflection peak. However, non-uniform strain or 
temperature gradients—such as those from microcracks—disrupt this coherence, 
resulting in peak broadening, splitting, or asymmetry. These spectral distortions can be 
analysed using data-driven methods guided by physical models to detect and 
characterise damage. Optical sensing is ideal for environments where electrical sensing 
could present as a hazard, such as the proposed composite liquid hydrogen tank in the 
COCOLIH2T project. 

 
3.2 Giant Magnetoimpedance 
 

A key limitation of FBGs is their reliance on continuous connection to data 
acquisition (DAQ) systems. The associated hardware, including power sources and 
signal electronics, restricts their embedment within structural components — 
particularly in aerospace, where mass and volume constraints are critical [9]. The Giant 
Magnetoimpedance (GMI) effect in glass-coated amorphous microwires offers an 
alternative, passive sensing modality. These microwires exhibit impedance changes 
under mechanical stress and can be embedded within composites for contactless strain 
measurement [10]. Damage-induced strain variations affect their electromagnetic 
response, enabling detection and localisation using physics-informed AI/ML. 

Such sensing modality as proposed in the INFINITE project can benefit aircraft 
composite components such as fan cowls, thrust reversers, inner inlet barrel, etc. 
Common damages to these include nicks, 
scratches, gouges, dents, delamination, 
disbond, and leading-edge erosion. 

 
 

4. APPROACH 
 

Building on these sensing 
modalities, this work develops physics-
informed, data-driven algorithms tailored 
to each application: FBG-based strain 
sensing in conformal liquid hydrogen 
tanks, and GMI-based stress sensing in 
carbon-fibre composites. Due to practical 

Figure 2: Magnetic field modulation and reflected 
signal power. 

Figure 1: Coupons manufactured by Titania with (a) delamination, (b) crack, and (c) dent damage prior 
to testing. 



limitations in directly modelling the 
inverse problem, data-driven methods are 
employed. 
 
4.1 Using Simulation Data 
 

By simulating spectra for a single 
Bragg wavelength across a range of stress 
and crack density values, and introducing 
noise to match experimental conditions, a 
representative training set is generated. 
Key features—peak count, position, 
width (relative to the design wavelength), 
and height (in dB)—are extracted. 

These features are used to estimate 
strain. Multiple algorithms were down selected and explored, (including linear 
regression, regression trees, SVMs, Gaussian process regression, and NNs), to estimate 
the strain using the features from preprocessing, and the best performing one was 
chosen—in this case, it was an ensemble regression tree. A high-confidence region, 
which includes only the more physically realistic data, was selected from an algorithm 
development perspective, however it was guided by limited available data from a 
cryogenic static test. If the estimated strain falls outside a high-confidence region, crack 
density is not evaluated as it cannot be reasonably estimated. Within the valid region, 
crack density is predicted using a second ensemble regression tree down selected from 
the above list. The results are described in Section 5.1. 
 
4.2 Using Experimental Data 
 

The previous work by the authors [6] detailed the simulation-based down selection 
and fine-tuning of algorithms for the GMI sensing modality, when delays in 
manufacturing readers had necessitated the use of simulation data. Once the readers 
were calibrated and manufactured, data was acquired by using the test setup shown in 
[11]. Apart from undamaged composite coupons embedded with microwires, coupons 
manufactured with delamination, dents, or crack damages at different severities were 
subjected to varying levels of loading stress (from 0 N through 1000 N) while acquiring 
the data. Figure 1 shows coupons manufactured with delamination, crack, and dent 
damages by Titania, a consortium partner in the INFINITE project, prior to testing. 
 

TABLE I: MATRIX FOR DAMAGED COUPONS FOR MICROWIRE SENSING TESTS. 

Damage Allowable 
Limit 

Loading 
Type 

Manufactured Damages 
30% 70% 100% 150% 250% 

Delamination 
(mm) 12.5 mm Bending 3.75 8.75 12.5 18.75 31.25 

Dent (layers) 3 layers Bending 1 2 3 5 8 
Crack (layers) 3 layers Bending 1 2 3 5 7 

Figure 3: Graph of reflected power vs argument of 
magnetic field. 



 
As shown in TABLE I, the test severities were chosen at 30%, 70%, 100%, 150%, 

and 250% of the allowable damage limit in aerospace context (assuming an 8-layer 
coupon). The coupon was subjected to an 
electromagnetic field modulated at 400 
Hz while the transceivers measured the 
reflection of a 200 kHz electromagnetic 
signal. This received signal is 
demodulated and passed through a low 
pass filter to get the reflection coefficient. 

When this reflection coefficient is 
plotted against the magnetic field, sharp 
peaks are observed just after the zero-
crossing of the magnetic field, as shown 
in Figure 2. The width and height of these 
peaks is dependent on the strain 
experienced by the microwires, which 
itself is dependent on the loading stress 
and the damage. When the reflected 
power is plotted against the argument of 
the magnetic field, these peaks overlap as 
seen in Figure 3. While there can be any 

number of methods to analyse this data 
for detection, identification, and 
estimation of the damage, since this 
graph itself should be the characteristic of 
the loading stress and damage, it was first 
attempted using a deep CNN on 
128×128-pixel images of these graphs. 
The CNN consists of 3 sets of filters, 
where each set is a convolutional filter 
followed by max-pooling and a ReLU 
activation. The final fully connected layer 
produces three outputs — damage 
severities for each type — expressed as 
fractions of the maximum allowable 
damage. Each output is then compared 

Figure 6: Crack density estimates for the simulation 
of FBG sensing modality. Severity 0 indicates 
undamaged samples. Boxes represent the 
interquartile range with the median line; outliers 
(>1.5× IQR) are shown as ×. 
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Figure 4: Deep CNN structure for identification and estimation. The final detection and classification of 
damages is done using thresholding and arg_max. 

Figure 5: Precision and Recall as a function of 
threshold crack density for FBG sensing modality. 



against a predefined threshold. If all three severities fall below their respective 
thresholds, the coupon is classified as healthy. If one or more exceed the thresholds, the 
damage type corresponding to the highest estimated severity is selected as the 
classification, and that severity value is reported as the estimate. For the classification 
of damages, the images of data from all the coupons as per the test matrix in TABLE I 
under all the varying stresses were analysed using a classification deep CNN with the 
structure shown in Figure 4. 

This approach enables unified learning—rather than training separate models for 
damage type and severity, a single model jointly learns both tasks. Since damage type 
and severity are intrinsically linked, this shared learning improves efficiency and may 
enhance generalisation. For non-linear strain responses, combining detection, 
identification, and estimation allows the model to capture complex interdependencies. 
With three distinct outputs, the model remains explainable — each prediction reveals 
how and why a classification was made. This modular architecture also simplifies 
deployment, version control, and maintenance, and supports future expansion to new 
damage types. The results are described in section 5.2. 

 
 

5. RESULTS & DISCUSSIONS 
 

In both cases the algorithms were tuned by partitioning the available data into 
training and validation sets. As there were some experiments for the FBG sensing 

Figure 7: Crack density estimation for experimental data for FBG sensing modality (using a 60-second 
moving-average). 

Figure 8: Severity estimates for the testing of microwire sensing modality. Severity 0 indicates 
undamaged samples. Boxes represent the interquartile range with the median line; outliers (>1.5× IQR) 
are shown as ×. 



modality without any ground truth about 
crack density, the models tuned on 
simulation data were tested on 
experimental data too, to study the 
robustness of the algorithm and its ability 
to generalise beyond its training 
conditions. 
 
5.1 FBG Sensing Modality 
 

Figure 6 shows the prediction of 
crack density for the simulation data. The 
correlation coefficient between the 
estimation and ground truth is 0.8422. 
For detection, the threshold for crack 
density was varied between 0 and 0.5 
mm-1, and the precision and recall (PR) 
values as a function of the threshold are 
shown in Figure 5 for the optimal trade-
off between safety and maintenance. The 
area under the PR curve is 0.9730. 

Figure 7 shows the estimation of crack density when applied to experimental data. 
Unfortunately, due to absence of any ground truth, the performance cannot be 
quantified. 
 
5.2 Microwire Sensing Modality 
 

TABLE II: METRICS & THRESHOLD FOR ESTIMATION OF DAMAGE SEVERITIES. 
 

 
Figure 8 shows the prediction of damage severity for the test data, and TABLE II 

reports the correlation coefficients (CC) for the same. Figure 9 shows the precision vs. 
recall curves when threshold severity is varied between 0% and 30%. TABLE II also 
reports the area under these PR curve (APR), as well as the optimal thresholds chosen, 
which are also shown in Figure 9. TABLE III shows the confusion matrix between 
classifications of damages when these optimal thresholds are used. 

 

TABLE III: CONFUSION MATRIX FOR CLASSIFICATIONS OF DAMAGES USING OPTIMAL 
THRESHOLDS IN TABLE II. 

 Delamination Crack Dent 
CC 0.9701 0.9934 0.9933 

APR 0.9904 0.99997 0.9998 
Threshold 0.2194 0.1574 0.1784 

 True Labels 
Healthy Delamination Crack Dent 

Pr
ed

ic
t. Healthy 93.34% 5.25% 0.55% 0.86% 

Delamination 3.44% 96.16% 0.20% 0.20% 
Crack 0.22% 2.52% 97.17% 0.09% 
Dent 0.66% 1.35% 0.14% 97.85% 

Figure 9: Precision vs. recall curves when threshold 
severity is varied between 0% and 30% for 
microwire sensing modality. Note that the lower 
limits for both the axes are 0.9, not 0, to highlight 
the difference between the three curves. 



6. CONCLUSIONS 
 

The main contributions of the paper are to present a synergy between two distinct 
but related damage detection and severity estimation applications using physics- 
disciplined AI/ML.  The proposed methodology incorporates safety by design which is 
vital in aerospace. Both projects demonstrate the benefits of adding physics-based 
constraints to make a more reliable and generalisable model, with application across 
both simulation and experimental scenarios, by strategically integrating heterogenous 
data preprocessing and algorithmic frameworks. This underscores the potential for 
physics disciplined AI/ML to bridge the gap between theoretical models and practical 
SHM applications, offering a powerful tool for enhanced structural integrity assessment 
and informed maintenance decisions in the aerospace context. 
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